Papers

Johns Hopkins

4. Engineering non-haem iron enzymes for enantioselective C(sp3)–F bond formation via radical fluorine transfer

Zhao, Q.; Chen, Z.; Soler, J.; Chen, X; Rui, J.; Ji, N. T.; Yu, E. Q.; Yang, Y.*; Garcia-Borràs, M.*; Huang, X.* Nat. Synth. 2024, published  (equal contribution) [Paper Link]  [Free text Link]

3. Protoglobin-catalyzed formation of cis-trifluoromethyl-substituted cyclopropanes by carbene transfer

Schaus, L.; Das, A.; Knight, A. M.; Jimenez-Osés, G.; Houk, K. N.; Garcia-Borràs, M.*; Arnold, F. H.*; Huang, X.* Angew. Chem. Int. Ed. 2023, e202208936. (equal contribution)  [Paper Link]  [Free text Link] 

2. The many facets of green organometallic chemistry: A foreword

Huang, X.; Yang, Y. J. Organomet. Chem. 2022, 976, 122398. [Link]

1. Directed evolution of nonheme iron enzymes to access abiological radical-relay C(sp3)−H azidation

Rui, J.; Zhao, Q.; Huls, A. J.; Soler, J.; Paris, J. C.; Chen, Z.; Reshetnikov, V.; Yang, Y-F.; Guo, Y.*; Garcia-Borràs, M.*; Huang, X.* Science 2022, 376, 869-874. (equal contribution)  [Paper Link]  [Free text Link] Highlighted in Chem Catalysis [Link 1] [Link 2]

Caltech

7.  Enantiodivergent α-Amino C−H Fluoroalkylation Catalyzed by Engineered Cytochrome P450s
Zhang, J.; Huang, X.; Zhang, R. K.; Arnold, F. H.* J. Am. Chem. Soc. 2019141, 9798-9802. (equal contribution) [Link]

6.  A Biocatalytic Platform for Synthesis of Chiral α-Trifluoromethyl Organoborons
Huang, X.; Garcia-Borràs, M.; Miao, K.; Kan, S. B. J.; Zutshi, A.; Houk, K. N.*; Arnold, F. H.* ACS Cent. Sci. 20195, 270-276. (equal contribution) [Link]
[Featured in ACS Central Science and Nature Catalysis]

5.  Engineered Cytochrome c-Catalyzed Lactone-Carbene B–H Insertion
Chen, K.; Huang, X.; Zhang, S. Q.; Zhou, A. Z.; Kan, S. B. J.; Hong, X.*; Arnold, F. H.* Synlett. 201930, 378-382. [Link]

4.  Enzymatic Assembly of Carbon–Carbon Bonds via Iron-Catalysed sp3 C–H Functionalization
Zhang, R. K.; Chen, K.; Huang, X.; Wohlschlager, L.; Renata, H.; Arnold, F. H.* Nature 2019565, 67-72. [Link]
[Selected as the Nature cover article, featured in Synfacts]

3.  Selective C−H Bond Functionalization with Engineered Heme Proteins: New tools to Generate Complexity
Zhang, R. K.; Huang, X.; Arnold, F. H.* Curr. Opin. Chem. Biol. 201949, 67-75. [Link]

2. Enzymatic Construction of Highly Strained Carbocycles
Chen, K.; Huang, X.; Kan, S. B. J.; Zhang, R. K.; Arnold, F. H.* Science 2018360, 71-75. [Link]
[Featured in Caltech NewsPhys.orgmyScience, and EurekAlert]

1.  Genetically Programmed Chiral Organoborane Synthesis
Kan, S. B. J.; Huang X.; Gumulya, Y.; Chen, K.; Arnold, F. H.* Nature 2017552, 132-136. (equal contribution) [Link]
[Featured in Caltech NewsGENmyScienceForbesScienceNewslineEurekAlertPhys.org]

Princeton

12.  Site-Selective 18F Fluorination of Unactivated C−H Bonds Mediated by a Manganese Porphyrin
Liu, W.; Huang, X.; Placzek, M. S.; Krska, S. W.; McQuade, P.; Hooker, J. M.*; Groves, J. T.* Chem. Sci. 2018, 9, 1168-1172. [Link]

11.  Oxygen Activation and Radical Transformations in Heme Proteins
Huang, X.; Groves, J. T.* Chem. Rev. 2018, 118, 2491-2553. [Link]

10.  Alkyl Isocyanates via Manganese-Catalyzed C–H Activation for the Preparation of Substituted Ureas
Huang, X.; Zhuang, T.; Kates, P. A.; Gao, X.; Chen, X.; Groves, J. T.* J. Am. Chem. Soc. 2017, 139, 15407–15413. (equal contribution) [Link]

9.  The Enigmatic P450 Decarboxylase OleT Is Capable of, but Evolved to Frustrate, Oxygen Rebound Chemistry
Hsieh, C. H.; Huang, X.; Amaya, J. A.; Rutland, C. D.; Keys, C. L.; Groves, J. T.; Austin, R. N.; Makris, T. M. Biochemistry 2017, 56, 3347–3357. [Link]

8.  Beyond Ferryl-Mediated Hydroxylation: 40 Years of the Rebound Mechanism and C−H Activation
Huang, X.; Groves, J. T.* J. Biol. Inorg. Chem. 2016, 1–23. [Link]

7. Taming Azide Radicals for Catalytic C−H Azidation
Huang, X.; Groves, J. T.* , ACS Catal. 2016, 6, 751–759. [Link]

6.  Manganese-Catalyzed Late-Stage Aliphatic C−H Azidation
Huang, X.; Bergsten, T. M.; Groves, J. T.* J. Am. Chem. Soc. 2015, 137, 5300–5303. [Link]

5.  Targeted Fluorination with the Fluoride Ion by Manganese-Catalyzed Decarboxylation
Huang, X.; Liu, W.; Hooker, J. M.; Groves, J. T.* Angew. Chem. Int. Ed. 2015, 54, 5241–5245. [Link] 
[Selected as a “Hot Paper” by Angewandte Chemie.]

4.  Late Stage Benzylic C−H Fluorination with [18F]Fluoride for PET Imaging
Huang, X.; Liu, W.; Ren, H.; Neelamegam, R.; Hooker, J. M.*; Groves, J. T.* J. Am. Chem. Soc. 2014, 136, 6842–6845. (equal contribution) [Link]
[Highlighted in C&EN News, Angew. Chem. Int. Ed. and Chem. Sci.]

3. Oxidative Aliphatic C−H Fluorination with Manganese Catalysts and Fluoride Ion
Liu, W.; Huang, X.; Groves, J. T.* Nat. Protoc. 2013, 8, 2348–2354. [Link]

2. Oxidative Aliphatic C−H Fluorination with Fluoride Ion Catalyzed by a Manganese Porphyrin
Liu, W.; Huang, X.; Cheng, M.; Nielsen, R. J.; Goddard, W. A. III; Groves, J. T.* Science 2012, 337, 1322–1325. [Link]
[Highlighted in Nature, C&EN News, Chemistry World, Princeton University home page]

1. Parallel and Competitive Pathways for Substrate Desaturation, Hydroxylation and Radical Rearrangement by the Non-heme Diiron Hydroxylase AlkB
Cooper, H. L. R.; Mishra, G.; Huang, X.; Pender-Cudlip, M.; Austin, R. N.; Shanklin, J.; Groves, J. T.* J. Am. Chem. Soc. 2012, 134, 20365–20375. [Link]

USTC

4.  Hydride Dissociation Energies of Six-Membered Heterocyclic Organic Hydrides Predicted by ONIOM-G4 Method
Shi, J.*; Huang, X.; Wang, H. J.; Fu, Y. J. Chem. Inf. Model. 2012, 52, 63–75. [Link]

3. A Theoretical Study on C−COOH Homolytic Bond Dissociation Enthalpies
Shi, J.*; Huang, X.; Wang, J. P.; Li, R. J. Phys. Chem. A 2010, 114, 6263–6272. [Link]

2. Theoretical Study on Acidities of (S)-Proline Amide Derivatives in DMSO and Its Implications for Organocatalysis
Huang, X.; Wang, H. J.; Shi, J.* J. Phys. Chem. A 2010, 114, 1068–1081. [Link]

1. Theoretical Study of One-Electron Redox Potentials of Some NADH Model Compounds
Wang, H-J.; Huang, X.; Shen, R.; Fu, Y.*; Rui, L. Chin. J. Chem. 2010, 28, 72–80. [Link]