Papers

Johns Hopkins

8. Merging photoredox with metalloenzymatic catalysis for enantioselective decarboxylative C(sp3)–N3 and C(sp3)–SCN bond formation

Rui, J.; Mu, X.; Soler, J.; Paris, J. C.; Guo, Y.*; Garcia-Borràs, M.*; Huang, X.* Nat. Catal. 2024, 7, 1394–1403. (equal contribution) [Paper Link]  [Free text Link]

Featured on the cover of Nature Catalysis (December 2024)  [Link]

Further insights into the development of this work by our group can be found in this Nature Research Briefing [Link]

7. Biocatalytic generation of trifluoromethyl radicals by nonheme iron enzymes for enantioselective alkene difunctionalization

Zhang, J. G.; Huls, A. J.; Palacios, P. M.; Guo, Y.*; Huang, X.* J. Am. Chem. Soc. 2024, 146, 34878–34886. (equal contribution) [Paper Link] [ChemRxiv Link]

6. Engineering non-haem iron enzymes for enantioselective C(sp3)–F bond formation via radical fluorine transfer

Zhao, Q.; Chen, Z.; Soler, J.; Chen, X; Rui, J.; Ji, N. T.; Yu, E. Q.; Yang, Y.*; Garcia-Borràs, M.*; Huang, X.* Nat. Synth. 2024, 3, 958–966. (equal contribution) [Paper Link]  [Free text Link]

Featured on the cover of Nature Synthesis (August 2024)  [Link]

Highlighted by Jan-Stefan Völler in Nature Catalysis “Enzymatic radical fluorine transfer”

Highlighted by Gross and Biegasiewicz in Nature Synthesis “A radical development for enzymatic fluorination“ 

5. Radical fluorine transfer catalysed by an engineered nonheme iron enzyme

Zhao, Q.; Chen, Z.; Soler, Rui, J.; Huang, X.* Methods Enzymol. 2024, 696, 231–247. (equal contribution) [Paper Link] 

4. Radical-relay C(sp3)–H azidation catalyzed by an engineered nonheme iron enzyme

Zhao, Q.*; Rui, J.; Huang, X.* Methods. Enzymol. 2024, 703, 195–213. (invited contribution to the “Mononuclear Non-heme Iron Dependent Enzymes” issue) [Paper Link] 

3. Protoglobin-catalyzed formation of cis-trifluoromethyl-substituted cyclopropanes by carbene transfer

Schaus, L.; Das, A.; Knight, A. M.; Jimenez-Osés, G.; Houk, K. N.; Garcia-Borràs, M.*; Arnold, F. H.*; Huang, X.* Angew. Chem. Int. Ed. 2023, e202208936. (equal contribution)  [Paper Link]  [Free text Link] 

2. The many facets of green organometallic chemistry: A foreword

Huang, X.; Yang, Y. J. Organomet. Chem. 2022, 976, 122398. [Paper Link]

1. Directed evolution of nonheme iron enzymes to access abiological radical-relay C(sp3)−H azidation

Rui, J.; Zhao, Q.; Huls, A. J.; Soler, J.; Paris, J. C.; Chen, Z.; Reshetnikov, V.; Yang, Y-F.; Guo, Y.*; Garcia-Borràs, M.*; Huang, X.* Science 2022, 376, 869-874. (equal contribution)  [Paper Link]  [Free text Link] 

Highlighted by Tennant and Biegasiewicz in Chem Catalysis “A radical-relay approach to biocatalytic C–N bond formation”

Highlighted by Petchey and Hyster in Chem Catalysis “Directed evolution of non-heme iron enzymes to access a non-natural radical-relay C(sp3)−H azidation”

Caltech

7.  Enantiodivergent α-Amino C−H Fluoroalkylation Catalyzed by Engineered Cytochrome P450s
Zhang, J.; Huang, X.; Zhang, R. K.; Arnold, F. H.* J. Am. Chem. Soc. 2019141, 9798-9802. (equal contribution) [Link]

6.  A Biocatalytic Platform for Synthesis of Chiral α-Trifluoromethyl Organoborons
Huang, X.; Garcia-Borràs, M.; Miao, K.; Kan, S. B. J.; Zutshi, A.; Houk, K. N.*; Arnold, F. H.* ACS Cent. Sci. 20195, 270-276. (equal contribution) [Link]
[Featured in ACS Central Science and Nature Catalysis]

5.  Engineered Cytochrome c-Catalyzed Lactone-Carbene B–H Insertion
Chen, K.; Huang, X.; Zhang, S. Q.; Zhou, A. Z.; Kan, S. B. J.; Hong, X.*; Arnold, F. H.* Synlett. 201930, 378-382. [Link]

4.  Enzymatic Assembly of Carbon–Carbon Bonds via Iron-Catalysed sp3 C–H Functionalization
Zhang, R. K.; Chen, K.; Huang, X.; Wohlschlager, L.; Renata, H.; Arnold, F. H.* Nature 2019565, 67-72. [Link]
[Selected as the Nature cover article, featured in Synfacts]

3.  Selective C−H Bond Functionalization with Engineered Heme Proteins: New tools to Generate Complexity
Zhang, R. K.; Huang, X.; Arnold, F. H.* Curr. Opin. Chem. Biol. 201949, 67-75. [Link]

2. Enzymatic Construction of Highly Strained Carbocycles
Chen, K.; Huang, X.; Kan, S. B. J.; Zhang, R. K.; Arnold, F. H.* Science 2018360, 71-75. [Link]
[Featured in Caltech NewsPhys.orgmyScience, and EurekAlert]

1.  Genetically Programmed Chiral Organoborane Synthesis
Kan, S. B. J.; Huang X.; Gumulya, Y.; Chen, K.; Arnold, F. H.* Nature 2017552, 132-136. (equal contribution) [Link]
[Featured in Caltech NewsGENmyScienceForbesScienceNewslineEurekAlertPhys.org]

Princeton

12.  Site-Selective 18F Fluorination of Unactivated C−H Bonds Mediated by a Manganese Porphyrin
Liu, W.; Huang, X.; Placzek, M. S.; Krska, S. W.; McQuade, P.; Hooker, J. M.*; Groves, J. T.* Chem. Sci. 2018, 9, 1168-1172. [Link]

11.  Oxygen Activation and Radical Transformations in Heme Proteins
Huang, X.; Groves, J. T.* Chem. Rev. 2018, 118, 2491-2553. [Link]

10.  Alkyl Isocyanates via Manganese-Catalyzed C–H Activation for the Preparation of Substituted Ureas
Huang, X.; Zhuang, T.; Kates, P. A.; Gao, X.; Chen, X.; Groves, J. T.* J. Am. Chem. Soc. 2017, 139, 15407–15413. (equal contribution) [Link]

9.  The Enigmatic P450 Decarboxylase OleT Is Capable of, but Evolved to Frustrate, Oxygen Rebound Chemistry
Hsieh, C. H.; Huang, X.; Amaya, J. A.; Rutland, C. D.; Keys, C. L.; Groves, J. T.; Austin, R. N.; Makris, T. M. Biochemistry 2017, 56, 3347–3357. [Link]

8.  Beyond Ferryl-Mediated Hydroxylation: 40 Years of the Rebound Mechanism and C−H Activation
Huang, X.; Groves, J. T.* J. Biol. Inorg. Chem. 2016, 1–23. [Link]

7. Taming Azide Radicals for Catalytic C−H Azidation
Huang, X.; Groves, J. T.* , ACS Catal. 2016, 6, 751–759. [Link]

6.  Manganese-Catalyzed Late-Stage Aliphatic C−H Azidation
Huang, X.; Bergsten, T. M.; Groves, J. T.* J. Am. Chem. Soc. 2015, 137, 5300–5303. [Link]

5.  Targeted Fluorination with the Fluoride Ion by Manganese-Catalyzed Decarboxylation
Huang, X.; Liu, W.; Hooker, J. M.; Groves, J. T.* Angew. Chem. Int. Ed. 2015, 54, 5241–5245. [Link] 
[Selected as a “Hot Paper” by Angewandte Chemie.]

4.  Late Stage Benzylic C−H Fluorination with [18F]Fluoride for PET Imaging
Huang, X.; Liu, W.; Ren, H.; Neelamegam, R.; Hooker, J. M.*; Groves, J. T.* J. Am. Chem. Soc. 2014, 136, 6842–6845. (equal contribution) [Link]
[Highlighted in C&EN News, Angew. Chem. Int. Ed. and Chem. Sci.]

3. Oxidative Aliphatic C−H Fluorination with Manganese Catalysts and Fluoride Ion
Liu, W.; Huang, X.; Groves, J. T.* Nat. Protoc. 2013, 8, 2348–2354. [Link]

2. Oxidative Aliphatic C−H Fluorination with Fluoride Ion Catalyzed by a Manganese Porphyrin
Liu, W.; Huang, X.; Cheng, M.; Nielsen, R. J.; Goddard, W. A. III; Groves, J. T.* Science 2012, 337, 1322–1325. [Link]
[Highlighted in Nature, C&EN News, Chemistry World, Princeton University home page]

1. Parallel and Competitive Pathways for Substrate Desaturation, Hydroxylation and Radical Rearrangement by the Non-heme Diiron Hydroxylase AlkB
Cooper, H. L. R.; Mishra, G.; Huang, X.; Pender-Cudlip, M.; Austin, R. N.; Shanklin, J.; Groves, J. T.* J. Am. Chem. Soc. 2012, 134, 20365–20375. [Link]

USTC

4.  Hydride Dissociation Energies of Six-Membered Heterocyclic Organic Hydrides Predicted by ONIOM-G4 Method
Shi, J.*; Huang, X.; Wang, H. J.; Fu, Y. J. Chem. Inf. Model. 2012, 52, 63–75. [Link]

3. A Theoretical Study on C−COOH Homolytic Bond Dissociation Enthalpies
Shi, J.*; Huang, X.; Wang, J. P.; Li, R. J. Phys. Chem. A 2010, 114, 6263–6272. [Link]

2. Theoretical Study on Acidities of (S)-Proline Amide Derivatives in DMSO and Its Implications for Organocatalysis
Huang, X.; Wang, H. J.; Shi, J.* J. Phys. Chem. A 2010, 114, 1068–1081. [Link]

1. Theoretical Study of One-Electron Redox Potentials of Some NADH Model Compounds
Wang, H-J.; Huang, X.; Shen, R.; Fu, Y.*; Rui, L. Chin. J. Chem. 2010, 28, 72–80. [Link]